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Compute shaders
The future of GPU computing or a late rip-off of 

Direct Compute?
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Compute shaders
Previously a Microsoft concept, Direct Compute

Now also in OpenGL, new kind of shader since the 
recet OpenGL 4.3

”Bleeding edge”
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Why is this important?
Why use that instead of CUDA or OpenCL?

+ Better integration with OpenGL

+ No extra installation!

+ Easier to configure than OpenCL

+ Not NVidia specific like CUDA

+ If you know GLSL, Compute Shaders are (fairly) 
easy!
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Not only plus...
- Steep hardware demands! Kepler + 4.3

- Some new concepts

- Not part of the main graphics pipeline like 
fragment shaders

Compute shaders run alone, not compiled 
together with others.
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So how do I use it?
Compiled like other shaders!

Trivial change from the usual shader loader/compilers 
from graphics programs, just compile as 

GL_COMPUTE_SHADER.

Easy:

• Uniforms work as usual

• Textures work as usual

(Note that you can write to textures in Fermi and up!)
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Write to textures?
Only newest GPUs.

Call in shader: imageStore()

imageStore(texUnit, texCoord, color);

Needs synchronisation! New call for that: 
glMemoryBarrier() and memoryBarrier() in shaders.

GLSL is getting more and more general - but freedom 
does not always make life easier.

Back to Compute Shaders...
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A bit different
No longer not one thread per fragment (output pixel)

Thereby: No thread specific output

Shader Storage Buffer Objects:

General buffer type fpr arbitrary data

Can be declared as an array of structures

Read and written freely by Compute Shaders!
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How do I upload input data?
Upload to SSBO:

glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);

glBufferData(GL_SHADER_STORAGE_BUFFER, size, ptr, 
GL_STATIC_DRAW);

How does the shader know?

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, id, 
ssbo);

layout(std430, binding = id, buffer x {type y[];};
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Access data in the shader
Set number of threads per block:

layout(local_size_x = width, local_size_y = height)

Thread number:

gl_GlobalInvocation
gl_localInvocation

        void main()
        {
          buffer[gl_GlobalInvocation.x] =
            - buffer[gl_GlobalInvocation.x];
        }
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Execute kernel
glUseProgram(program);

glDispatchCompute(sizex, sizey, sizez);

The arguments to glDispatchProgram set the number of 
blocks / workgroups. The number of threads (work items) 

per block are set by the shader.
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Getting output data
glBindBuffer(GL_SHADER_STORAGE, ssbo);

ptr = (int *) glMapBuffer(GL_SHADER_STORAGE, 
GL_READ_ONLY);

Then read from ptr[i]

glUnmapBuffer(GL_SHADER_STORAGE);
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int main(int argc, char **argv)
{
  glutInit (&argc, argv);
  glutCreateWindow("TEST1");
    
// Load and compile the compute shader    
  GLuint p =loadShader("cs.csh");

  GLuint ssbo; //Shader Storage Buffer Object

  // Some data
  int buf[16] = {1, 2, -3, 4, 5, -6, 7, 8, 9, 
10, 11, 12, 13, 14, 15, 16};
  int *ptr;
  
// Create buffer, upload data
  glGenBuffers(1, &ssbo);
  glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
  glBufferData(GL_SHADER_STORAGE_BUFFER,
      16 * sizeof(int), &buf, GL_STATIC_DRAW);

// Tell it where the input goes!
// "5" matches "layuot" in the shader.
// (Can we ask the shader about the number? 
I must try that.)
  glBindBufferBase(GL_SHADER_STORAGE_BUFFER,
         5, ssbo);

// Get rolling!
    glDispatchCompute(16, 1, 1);

// Get data back!
  glBindBuffer(GL_SHADER_STORAGE_BUFFER, 
ssbo);
  ptr = (int *)glMapBuffer(
         GL_SHADER_STORAGE_BUFFER,
         GL_READ_ONLY);
  for (int i=0; i < 16; i++)
  {
    printf("%d\n", ptr[i]);
  }
}

Complete main program:



Information Coding / Computer Graphics, ISY, LiTH

#version 430
#define width 16
#define height 16

// Compute shader invocations in each work group

layout(std430, binding = 5) buffer bbs {int bs[];};

layout(local_size_x=width, local_size_y=height) in;

//Kernel Program
void main()
{
  int i = int(gl_LocalInvocationID.x * 2);
  bs[gl_LocalInvocationID.x] = -bs[gl_LocalInvocationID.x];
}

Simple Compute Shader:
Note: Too many 
threads for data 
(16*16*16)
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Performance:
Preliminary results based on our FFT project

Similar to CUDA, but more time for setup
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Can you use Compute Shaders?
My system: CentOS 6.4, GTX 650Ti, OpenGL 4.3 - WORKS

Southfork: GTX 660Ti (great) OpenGL 4.2 - not good 
enough (yet)

Other test machine: GT630, OpenGL 4.3 - not good enough
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Are Compute Shaders an 
alternative?

• Portable between GPUs and OSes

• Steep hardware demands - for now

• All advantages in the future?



Information Coding / Computer Graphics, ISY, LiTH

CUDA
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GLSL 
Fragment 
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GLSL 
Compute 
shaders
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GPU computing conclusions
The desktop supercomputer

Fast changing area

Great performance for big problems that fit the 
architecture

Good performance for many other problems
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