
Information Coding / Computer Graphics, ISY, LiTH

Compute shaders
The future of GPU computing or a late rip-off of

Direct Compute?

Information Coding / Computer Graphics, ISY, LiTH

Compute shaders
Previously a Microsoft concept, Direct Compute

Now also in OpenGL, new kind of shader since the
recet OpenGL 4.3

”Bleeding edge”

Information Coding / Computer Graphics, ISY, LiTH

Why is this important?
Why use that instead of CUDA or OpenCL?

+ Better integration with OpenGL

+ No extra installation!

+ Easier to configure than OpenCL

+ Not NVidia specific like CUDA

+ If you know GLSL, Compute Shaders are (fairly)
easy!

Information Coding / Computer Graphics, ISY, LiTH

Not only plus...
- Steep hardware demands! Kepler + 4.3

- Some new concepts

- Not part of the main graphics pipeline like
fragment shaders

Compute shaders run alone, not compiled
together with others.

Information Coding / Computer Graphics, ISY, LiTH

Information Coding / Computer Graphics, ISY, LiTH

Information Coding / Computer Graphics, ISY, LiTH

So how do I use it?
Compiled like other shaders!

Trivial change from the usual shader loader/compilers
from graphics programs, just compile as

GL_COMPUTE_SHADER.

Easy:

• Uniforms work as usual

• Textures work as usual

(Note that you can write to textures in Fermi and up!)

Information Coding / Computer Graphics, ISY, LiTH

Write to textures?
Only newest GPUs.

Call in shader: imageStore()

imageStore(texUnit, texCoord, color);

Needs synchronisation! New call for that:
glMemoryBarrier() and memoryBarrier() in shaders.

GLSL is getting more and more general - but freedom
does not always make life easier.

Back to Compute Shaders...

Information Coding / Computer Graphics, ISY, LiTH

A bit different
No longer not one thread per fragment (output pixel)

Thereby: No thread specific output

Shader Storage Buffer Objects:

General buffer type fpr arbitrary data

Can be declared as an array of structures

Read and written freely by Compute Shaders!

Information Coding / Computer Graphics, ISY, LiTH

How do I upload input data?
Upload to SSBO:

glGenBuffers(1, &ssbo);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);

glBufferData(GL_SHADER_STORAGE_BUFFER, size, ptr,
GL_STATIC_DRAW);

How does the shader know?

glBindBufferBase(GL_SHADER_STORAGE_BUFFER, id,
ssbo);

layout(std430, binding = id, buffer x {type y[];};

Information Coding / Computer Graphics, ISY, LiTH

Access data in the shader
Set number of threads per block:

layout(local_size_x = width, local_size_y = height)

Thread number:

gl_GlobalInvocation
gl_localInvocation

 void main()
 {
 buffer[gl_GlobalInvocation.x] =
 - buffer[gl_GlobalInvocation.x];
 }

Information Coding / Computer Graphics, ISY, LiTH

Execute kernel
glUseProgram(program);

glDispatchCompute(sizex, sizey, sizez);

The arguments to glDispatchProgram set the number of
blocks / workgroups. The number of threads (work items)

per block are set by the shader.

Information Coding / Computer Graphics, ISY, LiTH

Getting output data
glBindBuffer(GL_SHADER_STORAGE, ssbo);

ptr = (int *) glMapBuffer(GL_SHADER_STORAGE,
GL_READ_ONLY);

Then read from ptr[i]

glUnmapBuffer(GL_SHADER_STORAGE);

Information Coding / Computer Graphics, ISY, LiTH

int main(int argc, char **argv)
{
 glutInit (&argc, argv);
 glutCreateWindow("TEST1");

// Load and compile the compute shader
 GLuint p =loadShader("cs.csh");

 GLuint ssbo; //Shader Storage Buffer Object

 // Some data
 int buf[16] = {1, 2, -3, 4, 5, -6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16};
 int *ptr;

// Create buffer, upload data
 glGenBuffers(1, &ssbo);
 glBindBuffer(GL_SHADER_STORAGE_BUFFER, ssbo);
 glBufferData(GL_SHADER_STORAGE_BUFFER,
 16 * sizeof(int), &buf, GL_STATIC_DRAW);

// Tell it where the input goes!
// "5" matches "layuot" in the shader.
// (Can we ask the shader about the number?
I must try that.)
 glBindBufferBase(GL_SHADER_STORAGE_BUFFER,
 5, ssbo);

// Get rolling!
 glDispatchCompute(16, 1, 1);

// Get data back!
 glBindBuffer(GL_SHADER_STORAGE_BUFFER,
ssbo);
 ptr = (int *)glMapBuffer(
 GL_SHADER_STORAGE_BUFFER,
 GL_READ_ONLY);
 for (int i=0; i < 16; i++)
 {
 printf("%d\n", ptr[i]);
 }
}

Complete main program:

Information Coding / Computer Graphics, ISY, LiTH

#version 430
#define width 16
#define height 16

// Compute shader invocations in each work group

layout(std430, binding = 5) buffer bbs {int bs[];};

layout(local_size_x=width, local_size_y=height) in;

//Kernel Program
void main()
{
 int i = int(gl_LocalInvocationID.x * 2);
 bs[gl_LocalInvocationID.x] = -bs[gl_LocalInvocationID.x];
}

Simple Compute Shader:
Note: Too many
threads for data
(16*16*16)

Information Coding / Computer Graphics, ISY, LiTH

Performance:
Preliminary results based on our FFT project

Similar to CUDA, but more time for setup

Information Coding / Computer Graphics, ISY, LiTH

Can you use Compute Shaders?
My system: CentOS 6.4, GTX 650Ti, OpenGL 4.3 - WORKS

Southfork: GTX 660Ti (great) OpenGL 4.2 - not good
enough (yet)

Other test machine: GT630, OpenGL 4.3 - not good enough

Information Coding / Computer Graphics, ISY, LiTH

Are Compute Shaders an
alternative?

• Portable between GPUs and OSes

• Steep hardware demands - for now

• All advantages in the future?

Information Coding / Computer Graphics, ISY, LiTH

CUDA

OpenCL

GLSL
Fragment
shaders

GLSL
Compute
shaders

Portable Features

Weak

Weak

Great Good

Great

Install

Weak

Weak

Great

Good

Great

Good Good

Code

Great

OK

Messy

OK

Information Coding / Computer Graphics, ISY, LiTH

GPU computing conclusions
The desktop supercomputer

Fast changing area

Great performance for big problems that fit the
architecture

Good performance for many other problems

Information Coding / Computer Graphics, ISY, LiTH

